Dataset Challenge Hands-On #1 – Flairbit coffee machines, Rulex churn service

DataScienceSeed Hands-ON #1

Il Dataset Hands-On è dedicato alla presentazione di problemi concreti di aziende o di ricerca, da affrontare con tecniche di data science a scopo didattico. Non c’è niente come un problema vero per imparare!

L’obiettivo è presentare dataset e relative sfide da parte di aziende o istituzioni, a sviluppatori, data scientists, machine learning engineers, esperti o in corso di formazione. Lo scopo degli incontri e delle sfide è didattico, ma non si esclude che ne possa uscire qualcosa di buono, sia per l’azienda che propone il challenge sia per chi lo affronta. Non si può perdere: o si ha successo o si impara…e le due cose non si escludono!

Ecco quello di cui abbiamo parlato nel primo incontro dedicato ai Dataset:

Internet of Professional Coffee Machines

FlairBit, software house che fornisce prodotti software proprietari e servizi di consulenza per aiutare le aziende nel processo di trasformazione digitale e innovazione, ha presentato un dataset contenente dati di funzionamento, manutenzione e guasti relativi a macchine per l’erogazione di bevande. Luca Bixio e Matteo Rulli hanno raccontato il contesto in cui il dataset è stato raccolto, spiegato il contenuto del dataset nei dettagli e lanciato alcune sfide ai partecipanti che vorranno cimentarsi con l’analisi dei dati. Sarà possibile prevedere il funzionamento delle macchine nel prossimo futuro sulla base dei dati a disposizione? Sarà possibile determinare le cause di un fermo macchina o di un guasto? Sarà possibile prevedere un fermo macchina? La sfida è lanciata!

Click per scaricare il pdf che descrive il dataset

Rulex Dataset Challenge
Presentazione dei risultati di Giorgio Garziano

Rulex propne uno speciale tipo di piattaforma AI, che si distingue per creare modelli comprensibili e facilmente implementabili, per consentire agli esperti di business e di processo di creare e distribuire rapidamente applicazioni AI senza bisogno di competenze matematiche o di programmazione.

Andrea Caridi, Business Development Manager di Rulex, aveva presentato nel primo incontro DataScienceSeed un dataset relativo al churn di un servizio di musica online, ovvero all’analisi ed alla predizione dell’abbandono della piattaforma da parte degli utenti, per poter consentire di prendere azioni mirate per prevenirlo.

Click per aprire la pagina che descrive il dataset. Per avere una copia del dataset usate il modulo in fondo al post.

Durante il nostro incontro, Giorgio Garziano,  senior software developer ed autore in datascienceplus.com, ha descritto la sua analisi eseguita in linguaggio R, con un notebook molto sostanzioso:

Click per scaricare il file .zip con il notebook R mostrato da Giorgio.

 

Il dataset fornito da Rulex deriva dal dataset della Kaggle Competition WSDM – KKBox’s Churn Prediction Challenge.

Per  sperimentare l’analisi usando il tool Rulex Analytics, usate il modulo qui sotto,

 

DataScienceSeed Meetup #1 – Coltivare Competenze

Data Science, Machine Learning, Intelligenza Artificiale…

Dietro alle parole ci sono opportunità di crescita, per chi vuole imparare ed essere operativo e per chi ha capito che per sviluppare la propria attività la via è quella dei dati. I meetup DataScienceSeed nascono per unire questi due mondi, con l’aiuto di chi sta già percorrendo queste strade.

Per chi vuole imparare è una occasione di sperimentare come diventare operativi sia possibile con strumenti accessibili e senza bisogno di essere guru.

Per chi vuole sviluppare la propria attività per comprendere le opportunità, orientarsi ed incontrare chi potrebbe essere d’aiuto.

In questo primo incontro abbiamo conosciuto tre persone speciali nel campo del Data Science: un manager di una azienda nata a  Genova nel campo del Machine Learning e che è ora basata a Boston tra i grandi dell’AI, un imprenditore appassionato di programmazione ed ora di machine learning, che sta affrotando con decisione la metamorfosi verso questo nuovo mondo, ed una Data Scientist con la vocazione dell’Open Source che attraverso la sua esperienza professionali e di attività nelle conferenze della community Python, ci ha guidati in una carrellata  tra gli strumenti disponibili per imparare ed affrontare la sfida dei dati.

Ecco i relatori e gli organizzatori: da sinistra Marcello Morchio, Andrea Rapuzzi, Stefania Delprete, Andrea Caridi, Luca Oppo, Franco De Mattei
Ecco (quasi tutti) i relatori e gli organizzatori: da sinistra Marcello Morchio (DataScienceSeed), Andrea Rapuzzi (A-Sign), Stefania Delprete (TOP-IX), Andrea Caridi (Rulex), Luca Oppo (Madein.it), Franco De Mattei (DataScienceSeed, Maker’s Village) – Missing: Enrico Carta (Cynomys), Enrico Ferrari (Rulex)

 

Enrico Ferrari, R&D Manager, Rulex
Enrico si occupa di machine learning da più di 10 anni. Ha partecipato dagli inizi all’avventura di Rulex, una startup nata dalla ricerca genovese con l’obiettivo di produrre modelli predizioni spiegabili e da qualche anno sbarcata a Boston. Per Enrico il futuro dell’Intelligenza Artificiale è nel Cognitive Machine Learning che combina la potenza delle macchine con le capacità di interpretazione e di intuizione degli umani.

Download slides – Enrico Ferrari – Rulex

 

https://www.rulex.ai/

Andea Rapuzzi, Owner A-Sign
Da software engineering a data science, quanto è lungo il passo? Andrea Rapuzzi ci racconta il suo viaggio alla scoperta di una nuova prospettiva e di un set di skill indispensabile per affrontare le nuove sfide tecnologiche. Perché farlo? Da dove partire? Con quali competenze iniziali? Quanto impegno richiede? Dove si può arrivare? Non un manuale di navigazione ma il diario di bordo di due anni entusiasmanti.

Download slides – Andrea Rapuzzi – A-SIGN

http://www.a-sign.it/

Stefania Delprete, Data scientist, TOP-IX, Personal development expert
Stefania è coinvolta nella comunità open source e di data science come volontaria alla PyCon, EuroPython, NumFOCUS ambassador, e organizzando a Torino la Pandas Sprint prendendo parte ad un evento internazionale.

Stefania ha esposto, anche con una demo basata su open data di Genova, come si possa far leva sulle librerie open source di Python, la loro documentazione e interazione con la comunità per iniziare alla grande il tuo progetto di data science!

Download slides – Stefania Delprete

 

Codice della demo di Stefania su Github

https://www.linkedin.com/in/astrastefania/

DataScienceSeed Challenge

Ecco le prime sfide, per mettere alla prova le nostre competenze di Data Science su problemi concreti. In base all’interesse raccolto tra i partecipanti organizzeremo incontri dedicati all’approfondimento dei tre problemi ed alle modalità per affrontarli. Nel prossimo meetup vedremo se sarà uscito qualcosa di interessante!

Se hai partecipato all’evento, puoi dare feedback e segnalarci un eventuale interesse, senza impegno, per appronfondire una o più sfide, usando questo link.

Se non hai partecipato all’evento ma ti piacciono le sfide, usa questo link.

Incantastorie 2018

un Dataset in movimento – presentato da Luca Oppo, Madein.it

Download slides – Challenge Madein.it


Musica Online: studiamo il “churning” di un servizio online

Presentato da Andrea Caridi, Rulex

Download slide – Challenge Rulex


Allevamento sostenibile: la tecnologia nella stalla

presentato da Enrico Carta, Cynomys

Download slides – Challenge Cynomys

Abbiamo concluso la serata con un aperitivo di networking, con prodotti di Aggio House

DataScienceSeed è un meetup NO PROFIT, sostenibile grazie alla sponsorizzazione di imprenditori illuminati,  dalla disponibilià di speakers competenti con la passione per la condivisione ed all’interesse di un pubblico vivace ed interessato. Se fai parte di una di queste  categorie puoi  entra nella community Data Science Seed 

https://www.meetup.com/it-IT/Data-Science-Seed-Meetup-Genova

Partner

Sponsor


Focaccia