DataScienceSeed #12, The Art of AI-Possible, the NVIDIA Way

Finalmente, dopo più di un anno passato pandemicamente online, i meetup DataScienceSeed tornano a svolgersi parzialmente in presenza, per il momento (per motivi di capienza dei locali) limitatamente ai soci iscritti all’associazione.

Carlo Nardone, Senior Solution Architect ad NVIDIA ci ha presentato alcuni trend dei modelli Deep Learning allo stato dell’arte e le conseguenze dal punto di vista dell’infrastruttura necessaria, con esempi concreti proposti da NVIDIA partendo dalle scale estreme fino agli strumenti software disponibili per la più ampia platea possibile di sviluppatori di applicazioni d’Intelligenza Artificiale.

Fisico di formazione, Carlo Nardone si è occupato di calcolo ad alte prestazioni (HPC) sviluppando codici di simulazione numerica su piattaforme massicciamente parallele sin dai tempi della Connection Machine ormai 30 anni fa. Oggi tutti hanno facilmente accesso a una piattaforma dello stesso tipo grazie alle GPU, mentre nel frattempo la vera “killer app” dell’HPC e del Calcolo Parallelo si è rivelata essere l’Intelligenza Artificiale grazie all’esplosione del Deep Learning. Dopo esperienze al CRS4, Quadrics (società Finmeccanica), Sun Microsystems, dieci anni fa ha puntato sull’adozione degli acceleratori NVIDIA come tecnologia innovativa per l’HPC aiutando fra l’altro una grande istituzione finanziaria italiana a portare i propri codici su CUDA. Da sette anni è in NVIDIA come Senior Solution Architect del team EMEA con focus sull’infrastruttura e sulle piattaforme dedicate all’IA: la famiglia NVIDIA DGX, DGX POD, DGX SuperPOD.

Ecco le slide presentate da Carlo Nardone  (pdf, 4M)

Demo Center NT Nuove Tecnologie per DataScienceSeed

Durante il meetup è stato presentato il demo center offerto per DataScienceSeed da NT Nuove Tecnologie, equipaggiato col supporto di NVIDIA ed ospitato nel data center di Liguria Digitale.

Presentazione Demo Center NT

 

DSS Online #11, Le sfide dell’Edge Computing

Nell’ultima edizione di DataScienceSeed Online prima della pausa estiva,  Mercoledi 21 Luglio alle 18:00 abbiamo parlato di Edge Computing, con Alberto Cabri, PhD.

Se hai partecipato o se hai visto il video (che trovi qui sotto) dacci un feedback!

La disponibilità di piattaforme integrate ad alte prestazioni consente al giorno d’oggi di eseguire algoritmi in edge con indubbi vantaggi sul consumo di banda, la sicurezza e la salvaguardia della privacy. Tuttavia la strada non è in discesa e talvolta la complessità di rendere operativo un sistema edge non è trascurabile e si deve lavorare su sistemi eterogenei con strumenti che se da un lato possono semplificare la realizzazione ed il deployment delle soluzioni (ad. es. docker) dall’altro richiedono l’acquisizione di ulteriori competenze.

Il caso d’uso  mostrato è relativo al riconoscimento real-time di componenti elettronici con deep learning, legato al progetto Ariadne, Data Driven Recovery System, di cui ci ha raccontato i sommi capi Rosario Capponi nella sessione di Q&A.

Alberto Cabri Ha conseguito il Dottorato in Computer Science and Systems Engineering presso l’Università di Genova nel 2020. E’ un socio fondatore di Vega Research Laboratories, uno spin-off dell’Università di Genova la cui mission sono la progettazione e sviluppo di soluzioni basate su tecnologie emergenti, quali AI, edge computing. Ha una Laurea in Ingegneria Elettronica ed è docente di ruolo di Informatica presso un Istituto Tecnico di Genova. E’ stato fondatore ed AD di Flashover Time S.r.l., Manager in Computer Science Corporation, Project Manager in Marconi Communications e ha ricoperto diversi ruoli tecnici in Elsag e Cap Gemini.

Ecco le slide presentate da Alberto (PDF 2M)

Questo il link al video mostrato durante la presentazione.

E qui il link alla serie di tutorial su Jetson Nano a cui si fa riferimento, che fa parte del NVIDIA Developer Program 

Infine ecco la slide sul progetto Ariadne di cui l’esempio descritto fa parte.

2021-04 Ariadne ADS