Ansible Use Case: Da zero a server di posta
Sia la gestione di grandi server farm sia quella di piccole installazioni può diventare un lavoro complesso, ma anche ripetitivo e noioso. Strumenti come Ansible nascono per automatizzare e orchestrare attività su una grande varietà di piattaforme e sistemi. In questo talk abbiamo visto come da un piccolo file di testo sia possibile arrivare alla completa installazione e configurazione di un servizio di posta elettronica.
(Semi)-automatic dataset preparation con youtube-dl e YOLOv3
Inutile girarci intorno, nel Deep Learning chi ha più dati vince. E come qualunque data scientist vi potrà confermare, la preparazione del dataset è la parte più lunga e “dolorosa” del lavoro. Fortunatamente, specialmente in ambito Computer Vision, i passi avanti nel Deep Learning e la potenza dei software rilasciati sono stati tali per cui oggi, il provetto data scientist, ha nella sua toolbox un set di strumenti formidabili in grado di alleggerire non poco il triste lavoro di raccolta, ritaglio e labeling delle immagini. In attesa di una coorte di assistenti virtuali che faranno tutto il lavoro al posto nostro, ci accontentiamo di YOLO (You Only Look Once), lo stato dell’arte nel campo dei real-time object detection systems, per dare un label e ritagliare gli oggetti che ci interessano a partire da semplici video di Youtube.
Adversarial Machine Learning, problematiche e rimedi
Gli algoritmi di machine learning sono vulnerabili a campioni di input ben progettati chiamati Adversarial Example. Si tratta di input realizzati con perturbazioni impercettibili per l’uomo, per esempio cambiando pochi pixel ben specifici in un’immagine, ma che possono facilmente ingannare gli algoritmi nella fase di test e funzionamento online, tanto da spingerli a sbagliare la classificazione. Si tratta di vulnerabilità da studiare, per evitare che un attaccante possa spingere un algoritmo a fare quello che lui vuole, magari con obiettivi fraudolenti per creare attacchi alla sicurezza di un sistema. In questo intervento abbiamo discusso problematiche e le tecniche per evitarle.
Roberto Marmo è formatore, consulente, professore a contratto di Informatica nella Facoltà di Ingegneria della Università di Pavia, laboratorio Computer Vision Multimedia Lab. Autore di una dozzina di libri sull’uso dei social media, estrazione ed analisi dati dai social media, visualizzazione scientifica. Interessato allo sviluppo di sistemi con computer vision e artificial intelligence.
Le slide di Roberto sono a questo link (pdf 1.5M)
Docker per Machine/Deep Learning
Creare modelli di Deep Learning può essere complicato a causa della difficoltà di installare CUDA, cuDNN, e dipendenze multiple, oltre che per le differenze tra gli ambienti di sviluppo e di produzione. Inoltre, tipicamente le librerie di Deep Learning tendono a favorire un aggiornamento costante a discapito della compatibilità all’indietro: modifiche sostanziali accadono molto più di frequente che in altri contesti. La soluzione a tutti questi problemi consiste nel ridurre tutte le vostre dipendenze ad una sola: Docker. Nel corso del suo intervento Andrea Panizza ci ha introdotto Docker e ci ha spiegato perché rappresenta una soluzione molto più adatta per il Deep Learning rispetto all’utilizzo di Virtual Machines, o Python virtual environment. Andrea ci ha inoltre mostrato come fare il deployment di un paio di applicazioni di Deep Learning su qualsiasi macchina con una moderna GPU NVIDIA ed una connessione Internet.
Andrea Panizza è Senior Data Scientist in Baker & Hughes. Andrea sviluppa soluzioni di Intelligenza Artificiale per il business Turbomachinery and Product Solutions, al fine di aumentare la produttività interna, migliorando i processi di manufacturing ed ingegneria (smart people & processes) e la competitività dei nostri prodotti (smart products).
Le slide e il codice di Andrea si trovano a questo link (github)
Lascia il tuo feedback sull’evento DataScienceSeed #9 @LinuxDay
Il meetup DataScienceSeed fa parte delle iniziatove dell’associazione
IAML, Italian Association for Machine Learning
DataScienceSeed #9 @ Linux Day Genova verrà ospitato da:
Auditorium Liguria Digitale – Erzelli
Il LinuxDay Genova proseguirà sabato 26 Ottobre in Genova Centro.