DSS Online #4: Tech & Ethics for the Open Source AI: The Linux Foundation AI

Venerdi 23 Ottobre 2020 sempre a partire dalle 18:00, DataScienceSeed è tornato questa volta in versione internazionale, completamente in inglese, con degli ospiti di eccezione dagli U.S.!

The First internation DataScienceSeed event, in our 4th online meetup we have had the pleasure to meet the Linux Foundation AI, part of the Linux Foundation. Their mission is to build and support an open AI community, and drive open source innovation in the AI, ML and DL domains by enabling collaboration and the creation of new opportunities for all the members of the community.

Give us your feedback on the event at this link!

We started from an intro to LFAI, then we dig deeper in two of their projects, touching technical and ethical topics. Two sides of the same coin of Artificial Intelligence, now and more and more in the future.

LF AI and Open Source: Accelerating Innovation in the AI Market

Over the past two decades, open source software — and its collaborative development model — has disrupted multiple industries and technology sectors, including the Internet/web, telecom, and consumer electronics. Today, large scale open source projects in new technology sectors like blockchain and artificial intelligence are driving the next wave of disruption in an even broader span of verticals ranging from finance, energy and automotive to entertainment and government.

In this talk, Dr. Haddad provided a quick overview of the efforts of the LF AI Foundation in supporting the development, harmonization, and acceleration of open source AI projects and how to get involved.

Download Ibrahim’s slides (pdf)

The easiest way to get in touch with LFAI is to join the Slack channel


If you want to know more , you may want to have a look to the session held by Ibrahim at the AI for People summer workshop, which is where we met him the first time!

Ibrahim Haddad (Ph.D.) is the Executive Director of the LF AI Foundation. Prior to the Linux Foundation, Haddad served as Vice President of R&D and Head of the Open Source Division at Samsung Electronics. Throughout his career, Haddad has held several technology and portfolio management roles at Ericsson Research, the Open Source Development Lab, Motorola, Palm and Hewlett-Packard. He graduated with Honors from Concordia University (Montréal, Canada) with a Ph.D. in Computer Science, where he was awarded the J. W. McConnell Memorial Graduate Fellowship and the Concordia University 25th Anniversary Fellowship.

End-to-End Deep Learning Deployment with ONNX

A deep learning model is often viewed as fully self-contained, freeing practitioners from the burden of data processing and feature engineering. However, in most real-world applications of AI, these models have similarly complex requirements for data pre-processing, feature extraction and transformation as more traditional ML models.

Any non-trivial use case requires care to ensure no model skew exists between the training-time data pipeline and the inference-time data pipeline. This is not simply theoretical – small differences or errors can be difficult to detect but can have dramatic impact on the performance and efficacy of the deployed solution. Despite this, there are currently few widely accepted, standard solutions for enabling simple deployment of end-to-end deep learning pipelines to production.

Recently, the Open Neural Network Exchange (ONNX) standard has emerged for representing deep learning models in a standardized format. While this is useful for representing the core model inference phase, we need to go further to encompass deployment of the end-to-end pipeline. In this talk Nick introduced ONNX for exporting deep learning computation graphs, as well as the ONNX-ML component of the specification, for exporting both “traditional” ML models as well as common feature extraction, data transformation and post-processing steps. He covered how to use ONNX and the growing ecosystem of exporter libraries for common frameworks (including TensorFlow, PyTorch, Keras, scikit-learn and Apache SparkML) to deploy complete deep learning pipelines. Finally, I will explore best practices for working with and combining these disparate exporter toolkits, as well as highlight the gaps, issues and missing pieces to be taken into account and still to be addressed.

Nick Pentreath (Open Source Developer, Developer Advocate) – Principal Engineer, IBM CODAIT – Nick is a Principal Engineer at IBM. He is an Apache Spark committer and PMC member and author of Machine Learning with Spark. Previously, he co-founded Graphflow, a startup focused on recommendations and customer intelligence. He has worked at Goldman Sachs, Cognitive Match, and led the Data Science team at Mxit, Africa’s largest social network. He is passionate about combining commercial focus with machine learning and cutting-edge technology to build intelligent systems that learn from data to add business value.

Download Nick’s slides (pdf)

AI Fairness 360 – an open source toolkit to mitigate discrimination and bias in machine learning models

Machine learning models are increasingly used to inform high-stakes decisions. Discrimination by machine learning becomes objectionable when it places certain privileged groups at the systematic advantage and certain unprivileged groups at a systematic disadvantage. Bias in training data, due to prejudice in labels and under -or oversampling, yields models with unwanted bias. The AIF360 R package is a R interface to AI Fairness 360 – a comprehensive toolkit that provides metrics to check for unwanted bias in datasets and machine learning models and state-of-the-art algorithms to mitigate such bias. This session explored the metrics and algorithms provided in AI Fairness 360 toolkit, as well as a hands-on lab in R.

AIF360 is a sub-project of Trusted AI

Saishruthi Swaminathan (Developer Advocate, Open Source Developer) is a developer advocate and data scientist in the IBM CODAIT team whose main focus is to democratize data and AI through open source technologies. She has a Masters in Electrical Engineering specializing in Data Science and a Bachelor degree in Electronics and Instrumentation. Her passion is to dive deep into the ocean of data, extract insights and use AI for social good. Previously, she was working as a Software Developer. On a mission to spread the knowledge and experience, she acquired in her learning process. She also leads education for rural children initiative and organizing meetups focussing women empowerment.

Download Saishruthi’s slides

Useful links:

Trusted AI WIki 

Trusted AI Projects

DataScienceSeed #11 – AI for People & Regione Liguria

Con il nuovo anno sono ripresi i meetups di DataScienceSeed! L’undicesima edizione ha visto ospiti AI for People, un’associazione che ha come obiettivo quello di capire e promuovere l’uso dell’intelligenza artificiale per il bene sociale, e l’ufficio cartografico di Regione Liguria, che ha presentato uno studio per l’estrazione di informazioni di interesse territoriale ed ambientale da immagini satellitari.

Se hai partecipato all’evento, lasciaci un feedback


Obiettivi, Rischi e contromisure nell’era dell’intelligenza artificiale

L’intelligenza artificiale (AI) ha avuto nell’ultimo decennio uno sviluppo ed un successo tale da trasformare in maniera definitiva la società in cui viviamo, rendendoci profondamente legati ad essa ed ai suoi servizi. Ma chi controlla l’intelligenza artificiale? Quali sono i rischi associati ad essa? Come possono intervenire le istituzioni per evitare che pochi individui controllino una tecnologia così fondamentale? In questo talk abbiamo esplorato i maggiori rischi tecnologici, etici e sociali associati ad uno scorretto sviluppo dell’AI, ed alcune contromisure per ridurli o evitarli. Sono stati inoltre presentati esempi e progetti in una visione di AI come tecnologia al servizio dei bisogni del cittadino.

Gabriele Graffieti  è uno studente di dottorato in Data Science and Computation all’università di Bologna, e Head of AI research ad AI for People. I suoi maggiori interessi sono modelli generativi, continual learning e bio-inspired artificial intelligence, in particolare il ruolo della capacità di generazione di informazioni durante l’apprendimento e la sua relazione con la memoria. Oltre a ciò è fortemente interessato nella filosofia e nell’etica dell’intelligenza artificiale, specialmente nell’individuazione e nella risoluzione dei rischi associati al suo sviluppo..

AI for People  è un’associazione che ha come obiettivo quello di capire e promuovere l’uso dell’intelligenza artificiale per il bene sociale. La nostra strategia è quella di condurre analisi, progetti e proposte che comprendono AI e società. Siamo un team eterogenero di persone che ha come scopo quello di creare un cambiamento positivo nella società attraverso l’uso consapevole ed etico della tecnologia.

 

 


Utilizzo di immagini satellitari gratuite per l’aggiornamento cartografico e lo studio del territorio in Regione Liguria

La costellazione europea di satelliti Sentinel ha incrementato le prospettive di ricerca nel settore del monitoraggio del territorio, dei cambiamenti climatici, dell’agricoltura, nella gestione delle emergenze e della sicurezza dei cittadini, fornendo dati gratuiti con elevata risoluzione spaziale, temporale e radiometrica. Avvalendosi di questi dati, l’ufficio cartografico di Regione Liguria (SITAR) sta sperimentando una serie di procedure per estrarre dalle immagini telerilevate informazioni di grande interesse territoriale ed ambientale, quali aree incendiate, variazioni di biomassa vegetale, evoluzione del tessuto urbanizzato. In questo ambito, lo sfruttamento delle potenzialità dell’AI potrebbe garantire un notevole miglioramento di tali procedure, incrementando sia l’estensione territoriale analizzata, che la frequenza di aggiornamento delle mappe tematiche.

Andrea De Felici è geologo e geomatico presso l’ufficio dei servizi informativi territoriali ed ambientali di Regione Liguria (SITAR) e si occupa di Sistemi Informativi Territoriali, Telerilevamento e reti GNSS. Il SITAR produce, aggiorna e distribuisce ai cittadini dati cartografici ed alfanumerici riguardanti il territorio e l’ambiente ligure, curando l’organizzazione e lo sviluppo del sistema informativo ambientale e territoriale e realizzando l’Infrastruttura per l’Informazione Geografica ligure integrata.

 


Il meetup DataScienceSeed fa parte delle iniziative dell’associazione

IAML, Italian Association for Machine Learning

DataScienceSeed#10 @C1A0 EXPO

Il decimo meetup di datascienceseed è stato ospitato nel contesto del C1A0 EXPO – Accessible Innovation, la fiera internazionale dedicata all’Intelligenza Artificiale, che si à svolta a Genova il 15-16 novembre 2019, a Palazzo San Giorgio.

Abbiamo avuto il piacere di ospitare tre relatori selezionati con call nazionale nei mesi scorsi. Il risultato è stata una carrellata approfondita tra le applicazioni principali del deep learning:
  • Natural Language Processing, con Cristiano De Nobili
  • Internet Of Things, con Emanuele Pomante
  • Computer Vision, con Alessandro Ferrari

Di seguito i video ed il materiale degli interventi!


State-of-the-art concepts in NLP and their limits

Come una macchina può comprendere il linguaggio? Quali erano e come stanno evolvendo gli algoritmi? Quali sono i successi e soprattutto i limiti? Alla base dei moderni algoritmi di deep learning per il linguaggio ci sono dei meccanismi molto semplici che hanno rivoluzionato il settore. Tra questi troviamo il concetto di Autoencoder e il meccanismo di Attenzione. Comprenderne la struttura, la base teorica che poi invoca la teoria dell’informazione classica è sia utile che interessante. L’idea è di mostrare con esempi semplici questi concetti ed enfatizzarne le applicazioni. Queste vanno dalla traduzione, alla generazione di testi fino alla diagnosi di malattie neurodegenerative. Ci sono però anche dei limiti, problemi che difficilmente una macchina è in grado di risolvere e che invece il nostro cervello comprende (quasi) al volo. E’ proprio navigando in questi limiti dell’intelligenza artificiale che comprendiamo quanto la nostra mente, oltre ad essere fonte di ispirazione per la ricerca, sia straordinaria.

Cristiano De Nobili è un fisico teorico delle particelle, con un Ph.D. in fisica statistica alla SISSA di Trieste. Partendo dalla computer vision, ora è scienziato senior di Deep Learning nel team AI che lavora attivamente sul linguaggio intelligente presso Harman, una società Samsung. Cristiano è anche istruttore di Machine / Deep Learning per Deep Learning Italia, per AINDO (Trieste) e recentemente anche per il Master in High Performance Computing (SISSA / ICTP) tenutosi a Trieste.

Slideset (2M pdf)


Applicazione su sensoristica IoT di reti neurali per la predizione

Le reti neurali possono essere utilizzate  per apprendere pattern ricorrenti su sequenze temporali di misure fisiche da sensoristica IoT. Nel caso d’uso che esamineremo, la rete neurale viene utilizzata per prevedere il consumo di energia elettrica di un edificio e monitorare il comportamento dei sensori IoT, con gli obiettivi di ottimizzare i consumi a partire dalle previsioni e di identificare la presenza di anomalie nei consumi o nel comportamento dei sensori. Le principali caratteristiche che rendono le reti neurali preferibili rispetto ad altri sistemi “classici” sono la capacità di adattarsi al compito e al contesto in cui operano e la loro velocità di esecuzione. Nell’ambito delle nuove sfide da affrontare per poter sfruttare a pieno le potenzialità offerte dall’intelligenza artificiale nel mondo dell’IoT, ci proponiamo di estendere i modelli di rete neurale a scenari più complessi (multi-edificio e multi-sensore) e implementare algoritmi “embedded” che consentano di fare inferenza direttamente sui device riducendo latenze ed instabilità di un sistema di machine learning.

Emanuele Pomante ha un dottorato in fisica all’università di Trieste, con studi focalizzati sull’analisi e sull’elaborazione di segnali spettrali molto deboli di origine astrofisica. Nel 2017 a Londra ha preso parte ad un programma intensivo di Data Science rivolto ai dottori di ricerca grazie al quale ha ottenuto il suo primo incarico in un progetto di AI presso un’azienda di Londra.
Dal 2018 è Data Scientist presso Gruppo Filippetti azienda leader in Italia per le tecnologie di smart safety, nei settori dell’ Internet of Things e dell’ Industria 4.0.

Slideset (7M pdf)


L’evoluzione della computer vision nell’era neurale: scienza & impresa

Nel corso di questo intervento esamineremo l’evoluzione del paradigma di detection, tracking e classification in computer vision: partendo dalla localizzazione di oggetti fino alla generazione di contenuti sintetici, con un excursus finale sugli “adversarial attack” anni ’90 (non “neurali”). Il caso d’uso che considereremo è CyclopEye, una Smart parking solution basata su reti neurali. CyclopEye è una soluzione personalizzabile e a basso costo per parcheggi intelligenti: consiste in un sensore video in grado di controllare lo stato occupazionale fino a sei posti auto contemporaneamente e di segnalarlo all’utente. Cyclopeye inoltre sfrutta la computer vision per fornire supporto alla gestione del parcheggio con funzionalità aggiuntive come: lettura targhe, riconoscimento oggetti abbandonati, parcheggio abusivo, riconoscimento volti, find-your-car e molti altri ancora. In altre parole una tecnologia che aiuta sia gli automobilisti che stanno cercando parcheggio, sia i responsabili dei parcheggi, che possono così monitorare lo stato della loro area controllando gli ingressi, identificando le categorie di veicoli che circolano e rilevando eventuali violazioni.

Alessandro Ferrari ha una Laurea Magistrale in Informatica e 10+ anni di esperienza in Computer Vision e del Machine Learning, con particolare attenzione a localizzazione, tracking e riconoscimento di oggetti. Nel 2016 fonda ARGO Vision (www.argo.vision), una startup innovativa che sviluppa soluzioni proprietarie AI-based per diversi mercati (AR, VR, Smart Parking, etc.).

Slideset (8M pdf)

 


Il meetup DataScienceSeed fa parte delle iniziative dell’associazione

IAML, Italian Association for Machine Learning

DataScienceSeed #10 verrà ospitato nel contesto di:

Palazzo San Giorgio, Genova
15-16 Novembre, 2019